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ABSTRACT

The properties of oxides are critically controlled by the oxygen stoichiometry.

Minimal variations in oxygen content can lead to vast changes in their prop-

erties. The addition of oxygen during synthesis may not be a precise enough

knob for tuning the oxygen stoichiometry when the material has several

stable and close oxidation states. We use sputtered V2O3 films as an example to

show that rapid transfer of the sample away from the heating element after

growth causes a temperature decrease (quenching) quick enough to freeze the

correct oxygen stoichiometry in the sample. This procedure has allowed us to

improve dramatically the V2O3 electronic properties without any adverse

measurable effects on the structural properties. In this fashion, the metal–in-

sulator transition resistance change was increased by two orders of magnitude,

while the transition width was decreased by 20 K.

Introduction

Oxides are one of the most widely studied systems in

condensed matter physics and have important uses

in modern technology [1–5]. They are used in the

study of such diverse phenomena as exchange bias

[6], high-temperature superconductivity [7], first-

order phase transitions [8], or resistive switching [9].

In many of these cases, the observed properties

depend delicately on the oxygen stoichiometry. For

example, in the high-temperature superconducting

YBa2Cu3O7-d (YBCO) a deviation of 0.5 in d can

completely suppress the superconducting phase and

render the material an antiferromagnetic insulator

[10–13]. Therefore, it is imperative to control precisely

the oxygen stoichiometry to achieve the desired

properties.

In thin-film deposition techniques like magnetron

sputtering, evaporation or pulsed laser deposition,

the control of oxygen stoichiometry is usually

accomplished by growing the material in a partial

oxygen atmosphere [14–17] or by a post-growth

annealing [7, 18–23]. However, in certain cases it

becomes very difficult to control the resulting level of

oxidation after growth. This is usually caused by the

high temperature needed to achieve good crys-

tallinity, which facilitates oxygen stoichiometry

changes during a relatively long cooldown. To avoid

this issue, in certain cases an annealing followed by
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an extreme temperature decrease in liquid nitrogen

[10, 24] or water [25] was used to freeze the correct

oxygen content in YBCO. On the other hand, the

insertion and extraction of oxygen through annealing

can be utilized, as it has been proposed as a way to

tune the properties and functionality of materials like

SrCoO [26] or LaSrFeO [27].

Here, we focus on the case of vanadium

sesquioxide (V2O3) [28–30]. This transition-metal

oxide presents a first-order metal-to-insulator transi-

tion (MIT) at a temperature around 160 K, with a

change in resistivity of several orders of magnitude.

The MIT occurs concurrently with a rhombohedral to

monoclinic structural phase transition (SPT) and a

para- to antiferromagnetic phase transition. V2O3 has

been studied intensely due to the long-standing

debate over the microscopic origin of the phase

transition [3, 31–34].

Very importantly, the physical properties of V2O3

depend very delicately on the oxygen stoichiometry.

A slight variation in oxygen concentration changes the

behaviour of properties like the electronic effective

mass or heat capacity [35] and, eventually, the MIT

and the antiferromagnetic state disappear, giving way

to a metal with a spin density wave [36]. Moreover,

several stable phases exist with diverse vanadium

oxidation states that have significantly different elec-

tronic, structural and magnetic properties [37, 38]. For

example, VO2 presents a MIT around 340 K accom-

panied by a SPT, without a magnetic transition

[30, 39]. Therefore, a careful tuning of the oxygen

stoichiometry in V2O3 is a crucial aspect for its growth.

In this paper, we developed a simple way of freezing

the correct oxygen stoichiometry achieved during

growth of V2O3 thin films. In particular, we show that a

marked improvement in theMIT properties is achieved

by moving the sample away from the heating element

right after the sputtering growth (‘‘quenching’’).

Importantly, the significantly decreasedMITmeasured

in unquenched samples grown with a partial oxygen

atmosphere and annealed quenched samples under-

lined the sensitivity of the MIT to variations in the

oxygen stoichiometry.

Materials and methods

V2O3 thin films were grown on 7 9 12 mm r-cut

sapphire substrates by RF magnetron sputtering

deposition from a home-made V2O3 target. The target

was fabricated by pressing stoichiometric V2O3

powder to 15 bar, followed by a 15.5-h bake at 1273 K

in a 1.2% H2, 98.8% Ar atmosphere. The base pressure

of the sputtering system was\ 10-7 Torr. The sam-

ples were grown using a 7.7-sccm flow of ultrahigh-

purity Ar ([ 99.999%) atmosphere, resulting in an

8 mTorr Ar atmosphere, at a temperature of 1023 K,

to achieve good crystallinity. Also, in order to study

the sensitivity to the oxygen stoichiometry, some of

the unquenched samples were grown adding oxygen.

For this, we used two gas lines: one with pure Ar and

the other with a 1.98%/98.02% O2/Ar mixture, with a

mass flow controller each to regulate the final pro-

portion of Ar and O2. This was done while main-

taining constant the 8 mTorr sputtering pressure. The

RF forward power during growth was 150 W with

0 W reflected, indicating good coupling of the power

source to the gun. This resulted in a 2.5 Å/s depo-

sition rate for a total thickness of 100 nm.

After the growth was finished, two different pro-

cedures were followed. For the unquenched samples,

the temperature was ramped down using the heater

at 12 K/min to room temperature in the same Ar

atmosphere. For the quenched samples, right after

the growth the sample was quickly transferred from

the heater elements (halogen lamps) of the manipu-

lator to the load lock. The procedure was done

keeping the same 8 mTorr Ar environment. This

achieved a rapid reduction in the sample temperature

as the sample holder stopped glowing hot red after

around 2–2.5 min. We had no means of directly

measuring the temperature during quenching, but a

rough estimate can be calculated. Assuming that the

temperature at which the glowing stops (known as

the ‘‘Draper point’’ [40]) in our Inconel substrate

holder is similar to other metals, 798 K [40], the

cooling rate was on the order of 100 K/min. This was

almost ten times faster than in the unquenched

sample. The cooldown in the load lock after the

Draper point is estimated to be around 40 K/min,

based on the time it takes for the substrate holder to

reach 325 K. This rate is much faster than for the

unquenched sample because its 12 K/min cooling

rate is achieved thanks to the heater, which continues

to supply heat after the growth.

For one of the quenched samples, a hotplate at

393 K was used to anneal the sample in air in order to

test its sensitivity to oxygen stoichiometry variations

at low temperatures.
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The samples were characterized in two ways. The

temperature-dependent four-probe electrical trans-

port was performed in a Quantum Design Dynacool

PPMS using a Keithley 6221 current source and a

Keithley 2182A nanovoltmeter behind two Keithley

6517A electrometers acting as a buffer. This allows us

to measure the highest resistances accurately. The

temperature was ramped at 2 K/min in all cases. In

addition, X-ray reflectivity (XRR) and diffraction

(XRD) characterization was done in a Rigaku Smart-

lab diffractometer using a Ge (220) monochromator

for Cu Ka1 = 0.154 nm wavelength in the Bragg–

Brentano configuration [see inset Fig. 1a].

Results

Figure 1a, b shows the XRR and XRD patterns,

respectively, of quenched (red line) and unquenched

(black line) V2O3 samples both grown in a pure Ar

atmosphere. The oscillations in Fig. 1a have a period

of D2h * 0.08� in both cases, which corresponds to a

thickness of * 110 nm. The roughness was deter-

mined to be * 2 nm for both samples through XRR

refinement with Motofit [41] (see Supplementary

Information for fitting curves and parameters). In the

diffraction curves shown in Fig. 1b, there are two

peaks corresponding to the r-cut sapphire substrate

at 2h = 25.6� (012) and 52.5� (024), and three V2O3

peaks of the (012) family of planes at 24.3�, 49.8� and
78.2�. The sapphire peaks have a lower intensity due

to the misalignment between the V2O3 (012) plane

and the substrate’s r-plane. The inset of Fig. 1b shows

the rocking curve around the (012) peak for each

sample, yielding very similar results with a full width

at half maximum of 0.638�. Reciprocal space maps for

the quenched and unquenched samples [Fig. 1c left

and right panels, respectively] aligned to the V2O3

(104) peak show that all peaks correspond to a single

orientation of the rhombohedral crystal structure.
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Figure 1 X-ray measurements of V2O3 thin films grown in a pure

Ar atmosphere in a reflectivity (normalized to the critical edge

intensity), b out-of-plane diffraction (normalized to the V2O3

(012) peak), and c reciprocal space mapping. The inset in a shows

the Bragg–Brentano measurement configuration. The black and

red lines in a, b correspond to unquenched and quenched samples,

respectively. The inset in b shows the rocking curve around the

(012) peak for both samples. The full width at half maximum is

0.638�. The left panel in c corresponds to a quenched sample

grown in pure Ar. The right panel corresponds to an unquenched

sample grown in the same conditions. In both cases, an epitaxial

growth along the (012) direction is obtained.
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This confirms that our films grow epitaxially along

the (012) direction with lattice constants a = 0.494 nm

and c = 1.403 nm. The value for a is 0.27% smaller

than in bulk V2O3 (a = 0.495 nm) due to the com-

pressive strain from the sapphire substrate

(a = 0.476 nm), while c is 0.22% larger than in bulk

V2O3 (c = 1.400 nm).

Figure 2 shows the resistivity q normalized by the

metallic state resistivity qm as a function of temper-

ature for a quenched V2O3 (red line) and an

unquenched film (black line) grown in a pure Ar

atmosphere. The metal–insulator transition (MIT)

causes a several-order-of-magnitude change in the

resistivity. The temperature at which the transition

begins is very similar for both samples, around 175 K

(bottom arrows). On the other hand, there is a clear

difference in both the width and the magnitude of the

transition. We define the width as the temperature

difference between the beginning and the end of the

transition; the magnitude is defined as the ratio qi/
qm, the resistivities at the end (top arrow) and

beginning (bottom arrow) of the transition, respec-

tively. The magnitude for the quenched sample is

about two orders of magnitude higher than that of

the unquenched film. Also, the transition in the

quenched sample is extremely sharp: its width is

20 K lower than in the unquenched sample. The

hysteresis width (the temperature difference between

the cooling and heating branches) remains constant

during the central part of the MIT. However, the

curve of the unquenched sample closes at much

lower temperatures.

Figure 3 shows a comparison of a quenched sam-

ple before (red) and after (blue) annealing in air at

393 K for 5 min. A significant degradation of the MIT

in the annealed sample is observed. The blue curve

has a much smaller magnitude and is wider, similar

to the unquenched samples (black curve in Fig. 2).

There are even signs of severe inhomogeneity in the

sample with a deformed hysteresis loop.

We also tried adding O2 during growth to inves-

tigate whether increasing the oxygen stoichiometry

could improve the transition in unquenched samples.

For this, the sputtering was performed adding a

1.98%/98.02% mixture of O2 and Ar to the previous

Ar flow as described in the methods section. We were

limited by the fact that the mass flow controllers

cannot regulate the mixture flow below 1 sccm. This

allowed us to mix a minimum of 0.28% O2 in the

chamber during growth while preserving the same

growth total pressure. This gives an oxygen partial

pressure of 2 9 10-5 Torr, which is at least two

orders of magnitude higher than the ones found in
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Fig. 2 Normalized resistivity as a function of temperature for

both the quenched (red line) and unquenched (black line) samples

grown in a pure Ar atmosphere. The normalization has been done

to the minimum resistivity, qm, in the metallic phase (quenched

9.0 9 10-6 Xm, unquenched 6.4 9 10-6 Xm). Both the magni-

tude and width of the metal–insulator transition are improved

when the films are quenched. The black and red arrows mark the

beginning and end of the MIT for the unquenched and quenched

samples, respectively.
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Fig. 3 Normalized resistivity as a function of temperature for a

quenched sample (red line) grown in Ar atmosphere, the same

sample after annealing at 393 K in air for 5 min (blue line), and an

unquenched sample grown with an atmosphere of 0.28% oxygen

(black line). The normalization has been done to the lowest

resistivity in the metallic phase, 9.0 9 10-6 Xm, for the first two,

and to the resistivity at 200 K, 2.1 9 10-5 Xm, for the O-rich

sample. The deformation and dispersion of the MIT towards lower

temperatures in the annealed sample illustrates the deterioration of

V2O3. No transition is observed for the O-rich sample.
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the literature [14, 42]. The addition of O2 suppressed

the transition completely and rendered the film

semiconducting (black curve of Fig. 3). The relatively

low resistivity (2 9 10-5 Xm) of this film suggests

that an O-rich V2O3 film was obtained, rather than a

completely different vanadium oxide phase like

V3O5, V4O7, or VO2, which are insulating and much

more resistive in the measured temperature range

[37].

Discussion

The comparison between quenched and unquenched

samples (Fig. 2) shows that the electronic properties

improved markedly when the temperature is rapidly

decreased after growth: the MIT is sharper and dis-

plays a two-order-of-magnitude higher resistivity

change.

The observed results could be explained in two

ways: (1) the quenched samples have an improved

crystalline structure; or (2) the oxygen stoichiometry

in the quenched samples is closer to the optimal

value. In principle, both would lead to an enhanced

MIT. However, the first possibility does not match

our results in X-ray characterization results. Fig. 1b, c

shows crystallinity in the quenched sample is not

significantly better. Thus, the enhanced transport

does not correlate with an improvement in the

structure. This leaves only option 2, which leads to a

very important conclusion: the time that the sample

spends at high temperature after growth results in a

reduction in the oxygen content, changing it away

from the optimal stoichiometry. This, in turn, results

in adverse effects on the MIT magnitude and width.

We must also address the question of homogeneity in

the films. Given the fact that the surface is the most

exposed part, it is likely that an oxygen gradient

exists, where the surface has the lowest concentra-

tion. A further cause of inhomogeneities is that dur-

ing cooling down the part of the film closest to the

substrate is at a higher temperature than the surface.

Shortening this time as much as possible effectively

limits this effect. This relationship between homo-

geneities and the difference in width observed in the

MIT in Figs. 2 and 3 is indicative of the distribution in

the transition temperatures of each film. For the

unquenched sample grown in pure Ar and the

annealed quenched sample, the width is much larger,

possibly due to a big dispersion in the transition

temperature of the different domains. The more

homogeneous quenched sample would have a smal-

ler dispersion and, thus, a significantly smaller width.

It is important to note that this improvement in the

material properties of V2O3 produces no significant

changes in the structure. One may expect that

quenching would freeze structural defects in the

material, thus producing a more disordered film.

However, that is not what we observe. X-ray

diffraction measurements show that quenched and

unquenched films have the same (012) epitaxial

structure, with similar linewidths and well-defined

orientations. This could be due to the fact that we are

using a rather ‘‘slow’’ form of quenching when com-

pared to liquid-cooled techniques.

The conclusions presented above are also sup-

ported by the observed sensitivity to oxygen content

of V2O3. Significant degradation of the metal–insu-

lator transition can be observed when heating up the

samples above 393 K in air (Fig. 3). Also, the addition

of 0.28% O2 during growth makes the transition

disappear (Fig. 3).

This sensitivity to the oxygen stoichiometry is

common to all oxides and is an important concern for

applications based on these materials [3, 43–45]. The

rapid transfer out of the chamber of the sample after

growth was proven to be an effective tool for pre-

serving the optimal oxygen stoichiometry. Note that,

in this case, our technique was the only method that

worked, since adding oxygen during growth pro-

duced a complete suppression of the MIT. This

quenching technique is much simpler than the

extremely rapid quenching with liquids and does not

involve the need of quartz sheaths [25] or compli-

cated setups and mechanisms to drop the sample in

the liquid [10]. Our method can also be applied to any

deposition technique for oxide growth at high tem-

perature. After growth is complete, quenching will

prevent loss of oxygen during cooling and will likely

result in a more homogeneous oxygen stoichiometry

across the film.

Conclusion

In summary, we have demonstrated that fast tem-

perature quenching after growth can be achieved by

quickly transferring the sample out of the deposition

chamber. This technique applied to oxide materials

deposition is an effective tool to freeze in the correct

J Mater Sci (2018) 53:9131–9137 9135



oxygen stoichiometry achieved during growth, and

allows for a more precise optimization of the material

properties. In our case, quenching V2O3 thin films

after high-temperature RF sputtering growth leads to

a marked improvement in the MIT. We showed a

two-order-of-magnitude higher resistivity change

and a 20-K transition width decrease, without any

noticeable structural changes. Our work shows that

further high-precision techniques which allow the

measurement and characterization of oxygen stoi-

chiometry in novel materials are needed if oxides are

to be used in the next generation of applications.
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